


4 Testing Experience – 27/2014

By Daniel Knott

How to Stress Test Your 
Mobile App
Stress and interrupt testing is an important part of the mobile testing 
process. With the help of tools, mobile testers are able to determine 
possible performance or stability issues of the app. To test your app 
against interrupts, you can manually trigger lots of notifications to the 
device while using the app. Notifications can be incoming messages, 
calls, app updates, or push notifications (software interrupts). Press-
ing the volume up and down button, or any other kind of hardware 
button, is also an interrupt (hardware interrupt) that can have an 
impact on your app.

Doing all those tasks manually means lots of work and is time con-
suming. In most cases, those test scenarios cannot be done manually, 
because it is very hard to simulate fast and multiple user inputs with 
one or two hands. But it can be done with the help of tools and it is 
really easy to integrate into the development and testing process.

Android Monkey
For Android apps, the Monkey tool [MON01] can be used, which is part 
of the Android SDK. Monkey is a tool that is able to run either on the 
physical device or the emulator. While running, it generates pseudo-
random user events such as touch, click, rotate, swipe, mute the phone, 
shutdown the internet connection, and many more to stress test the 
app and to see how the app handles all those inputs and interrupts.

You need the package name of the Android apk file to execute the 
Monkey tool, otherwise the tool will execute its random commands 
to the entire phone instead of to the app under test.

With access to the app code, the package name can be found in the 
AndroidManifest.xml. If only the compiled apk file is available, mobile 
testers can use the Android Asset Packaging Tool [AAP02] (aapt), to 
get the package name from the app. aapt is located in the build-tools 
folder of the installed Android SDK version.

The path to aapt can look like this:

/../daniel/android/sdk/build-tools/android-4.4/

With the following command, the package name can be read out 
from the apk file:

./aapt d badging /daniel/myApp/myApp.apk | grep 'pack'

The output will look like this:

... 

package: name='com.myApp' versionCode='' versionName='' 

...

When the package name (in this case com.myApp) is available, execute 
Monkey with the help of adb (Android Debug Bridge) [ADB03].

The following command will start Monkey:

./adb shell monkey -p com.myApp -v 2000

The 2000 indicates the number of random commands that Monkey 
will perform on the app. With an additional parameter -s for seed, 
monkey will generate the same sequence of events again. This is re-
ally important when reproducing a bug, which happens during the 
Monkey execution time.

UI AutoMonkey
For iOS apps there is a similar tool available, called UI AutoMonkey 
[UIA04]. UI AutoMonkey is also able to generate multiple commands 
in order to stress test an iOS app. To use UI AutoMonkey, a UIAutoma-
tion Instruments template must be configured within Xcode. After the 
template has been configured, a JavaScript file needs to be written 
to tell the tool how many and which commands should be executed 
during the stress-testing session.

Sample UI AutoMonkey Script
1. ...

2. config: {

3.     numberOfEvents: 2000,

4.     delayBetweenEvents: 0.05,    // In seconds

5.         // Events that will be triggered on the phone

6.         eventWeights: {

7.             tap: 300,

8.             drag: 12,

9.             flick: 15,

10.             orientation: 20,

11.             clickVolumeUp: 10,

12.             clickVolumeDown: 10,

13.             lock: 1,

14.             pinchClose: 10,



Testing Experience – 27/2014 5

15.             pinchOpen: 10,

16.             shake: 10

17.         },

18.         touchProbability: {

19.             multipleTaps: 0.05,

20.             multipleTouches: 0.05,

21.             longPress: 0.05

22.         }

23. }

24. ...

If the script is written, it can be executed within Xcode to stress test 
the iOS app.

At the end of the test run, both tools will be generating an overview 
of possible errors or problems that occur within the app.

Note: The detailed installation instructions and the complete sample 
script can be found on the tool manufacturer’s website.

Both tools can be integrated into a continuous integration system to 
run automatically after every commit. Stress and interrupt testing 
a mobile application is pretty simple and should be one part of the 
mobile testing strategy. Besides that, it generates a huge benefit for 
mobile testers, helping the team to build a reliable and robust mobile 
app. ◼

References
[MON01]: Android Monkey 

developer.android.com/tools/help/monkey.html

[AAP02]: Android Tool aapt 
developer.android.com/tools/building/index.html

[ADB03]: Android Debug Bridge 
developer.android.com/tools/help/adb.html

[UIA04]: UI Auto Monkey 
github.com/jonathanpenn/ui-auto-monkey

Daniel Knott has been working in the field of 
software testing since 2008. In his career he has 
worked for companies such as IBM, Accenture, 
XING, and AOE. In different agile projects Daniel 
gained in-depth knowledge of software testing, 
e.g., in mobile, search, recommendation, and web 
technologies. During his time at XING, Daniel 

worked as a Team Lead QA in the mobile team and developed a 
fully automated testing framework for Android and iOS.
Currently, he is working as Software Test Manager at AOE GmbH 
where he is responsible for test management and test automation 
in mobile and web projects. Daniel is also a frequent speaker at agile 
conferences, author of his blog and of articles in testing magazines.
Twitter: @dnlkntt
LinkedIn: www.linkedin.com/pub/daniel-knott/1a/925/993
Blog: www.adventuresinqa.com

> about the author

Sep 29 – Oct 1, 2014 Berlin/Potsdam

LEARN HOW TO CREATE 
BETTER MOBILE APPS!

www.mobileappeurope.com

GET YOUR 
TICKET NOW!

LAST TICKETSManagers

Marketers

Designers

Developers

Testers


